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1 Abstract A....

In the work presented here, we measured what might be regarded best case timings for
the sparse matrix vector multiplies, sparse triangular solves, and inner products that
constitute the iterative portion of Krylov space programs that use incompletely fac-
tored matrices for preconditioning. We performed timings on a large three dimensional
model problem over a cube shaped domain discretized with a seven point template. The
highest computational rate we were able to achieve for the sparse triangular solve was
13.1 MFlops on 4K processors. This would correspond to 210 MFlops on an appropri-
ately scaled problem on a 64K processor machine. The highest computational speed
we achieved for a matrix vector multiply was 64.2 MFlops. This would correspond to
a speed of 1027.0 MFlops in a 64K processor machine. Thus for appropriately struc-
tured problems, the CM-2 achieves impressive computational speeds. We compared
the computational speed obtained from the CM-2 with those from optimized code on a
single head of a Cray X/MP. For both the matrix vector multiply and triangular solve
computational kernels, the projected speeds on a full 64K processor machine exceed the
Cray X/MP sp'-cd3 by a substantial factor.

The timings on the CM-2 were highly dependent on the use of very specialized pro-

*This work was supported by the IS. Office of Naval Research under Grant N00014-86-K-0310 through
Yale and by DARPA contract DAA-I 101-88-C-0409 through Scientific Computing Associates



grams. These programs mapped the problem domain onto the processor topology very
carefully and used the optimized local NEWS communications network. We explored the
consequences of relaxing these restrictions in a variety of ways. Performance degraded
very significantly as we abandoned the optimized NEWS communications network and
abandoned the careful mapping of a problem domain to the CM-2 processor topology.
In some cases we noted 20 to 75 fold degradations in performance as these constraints
werc relaxed.

2 Overview

There are at least two critical components required to obtain extremely fast methods
for solving linear systems. One is the use of efficient and robust numerical algorithms,
and the other is the employment of effective techniques for delivering a large amount of
computing power. These requirements can conflict with one another in a variety of ways.
Many modern methods of solving reasonably general classes of linear systems involve a
degree of implicitness; this implicitness can limit the amount of available concurrency.

When Krylov space linear solvers are used, the choice of preconditioner can play a
major role in determining the operation count of the resulting algorithm [12], [9], [8,
[11]. Unfortunately, some of the most powerful preconditioners are obtained by using
incompletely factored matrices. To apply these preconditioners, we must repeatedly
solve sparse triangular systems. The efficiency with which such solutions could be
carried out was characterized by Saad et. al. [13]. Sparse triangular systems arising
from a range of problems have been efficiently solved on a number of shared memory
architectures [10], [1], [3], [4]. Because data dependencies limit the concurrency
available from a sparse triangular solve, it has not been clear that triangular solves
could be usefully employed in programs written for massively parallel architectures.
One goal of our study was to determine whether one could realistically hope to take
advantage of incompletely factored matrices as preconditioners for solving sparse linear
systems on massively parallel architectures such as the CM-2.

Several other researchers have addressed relative utility of various forms of precon-
ditioning on the CM-2. Both [6] and [7] concluded that it was not worthwhile to
precondition using incompletely factored matrices when solving linear systems arising
from two dimensional partial differential equations on massively parallel machines such
as the CM-2. We concentrated our efforts on a simple three dimensional model problem
because of the greater parallelism found in the sparse triangular solve.

In the work described in this paper, we have carefully examined a set of model prob-
lems and have been able to demonstrate that under the appropriate circumstances we
are able to obtain surprisingly good performance on key computational kernels includ-
ing the sparse triangular solves used for preconditioning in Krylov space solvers. To
put our results in perspective, we compared our measured and projected computational
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speeds with results from experiments on a single head of a Cray X/MP. We concluded

that for selected problems, a 64K processor CM-2 could outperform an analogous well
tuned program single head of a Cray X/MP by at least a factor of 5 in performing the
sparse triangular solves and the matrix vector multiplies required in the Krylov solver
inner loop.

Efficient methods for solving partial differential equations frequently make use of

non-uniform grids designed to put the most computational effort where the problem is
hardest. An effect of this approach is that the algebraic linear (and non-linear) systems
that must eventually be solved are sparse and quite irregular in structure. Careful

mapping of workload can be extremely important in obtaining adequate performance
from multiprocessor architectures with strong memory hierarchies; mapping is typically
straightforward in very rcgular problcms with a known structure and is much more

problematic for problems with unknown or irregular structures.

Another goal of our research was to quantify the degree to which performance on
a machine such as the CM-2 depends on exploiting regularities in problem structure.
We will address the issues raised above by presenting a number of timings on the CM-2
for sparse matrix vector multiplies, sparse triangular solves and inner products. We

find that obtaining good performance on the CM-2 is critically dependent on the use of
very well tuned special purpose computational kernels. We have described a number of
experimental results arising from our investigations in [5].

In Section 3, we will present what we might regard as best case timings for the
sparse matrix vector multiplies, sparse triangular solves, inner products and SAXPYs
that constitute the iterative portion of Krylov based programs. It will be shown that
for large three-dimensional problems, good performance can be obtained from sparse
triangular solves. In Section 4, we demonstrate that performance on the CM-2 is
an extremely sensitive function of 1) problem mapping and 2) a priori knowledge of
dependency patterns. We will show that this performance sensitivity shows up very
strongly not only in the sparse triangular solve but also in the sparse matrix vector

multiply.

3 Performance on a Regular Three Dimensional Mesh

In this section we describe the results of experiments that give a best case estimate of
the rate with which the CM-2 can carry out the procedures that make up the iterative

portions of Krylov space linear equation solvers. We will first present timings from con-
secutive sweeps over a three dimensional mesh along with timings for the corresponding
inner products and SAXPYs. The performance measurements we present here char-
acterize the performance that would arise from the iterative portions of linear solvers
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employing many simple preconditioners. We will then present timing results from a pro-
gram that performs a sequence of linked matrix vector multiplies and triangular solves.
We argue that the matrix vector multiply and triangular solve timings obtained from
this benchmark are a fair measure of the timings that would be observed from these pro-
cedures were they integrated into an iterative loop of the appropriately preconditioned
Krylov solver. As part of this test loop, we also measured the time required to perform
inner products in a manner that conformed with data structures and the mapping used
for the other two procedures.

The software provided with the CM-2 makes use of the concept of virtual processor3;
one can program the CM-2 so that it appears that there are a larger number of processors
than actually exist. The CM-2 software assigns blocks of virtual processors to each real
processor. This assignment of multiple virtual processors to each real processor tends
to amortize the -verhead of transmitting each instruction to the physical processors. In
most of the problems we investigate in this paper, increasing the ratio of virtual to real
processors also reduces overheads due to communication.

3.1 Mesh Sweeps

One can use a very large number of virtual processors in implementing a sparse matrix
vector multiply. We examined the performance of a very specialized PARIS program
(PARIS is the CM-2 assembly language) which was written for a three dimensional
problem on a cube with a seven point operator. The program hence consisted of a
sequence of sweeps over a three dimensional mesh, the mesh was embedded into a cube
of virtual processors with one mesh point assigned to a virtual processor. The cube
of virtual processors used by the program has an edge size equal to a power of two.
Subject to this constraint, the largest mesh we could embed was one with an edge size
of 64. Each iteration of the 1000 carried out took an average of 49 milliseconds. This
corresponds to a speed of 64.2 MFlops on the 4K processors. With an appropriately
scaled problem, one might expect to obtain 1027.0 MFlops on a 64K processor machine.
The results obtained from timings for meshes of varying sizes on 4K processors are
depicted in Table 1.

In Table 1 we also depict measurements obtained from SAXPYs and inner products
over three dimensional domains. All of these results were obtained by timing 100000
consecutive iterations. Because SAXPYs do not require communication, we expect to
obtain extremely high performance. For SAXPYs carried out over a cube of virtual
processors with edge size 128, we obtained a speed on 4K processors of 235.0 MFlops,
this would correspond to 3760 MFlops on a 64K processor machine. The efficiency
with which SAXPYs are performed decreases when one uses fewer virtual processors. A
cube with edge size 16 has one virtual processor for each actual processor, from Table
1 we see that the speed of this computation decreases to 131.0 MFlops, note that this
reduction in speed must be unrelated to communication overhead. In Table 1, we also
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Table 1: Three Dimensional Embedding: Mesh Sweeps, Inner Products, SAXPYs: 4K
processors

Grid MVM SAXPY Inner Product

Size MFlops MFlops MFlops
edge

16 23.5 131.0 14.6
32 46.1 226.0 81.3
64 64.2 233.9 185.8
128 N.A. 235.0 220.9

do 100 times

Mx =y
Solve Lx = y
z = inner-product(y,y)

end do

Figure 1: Sweeps over a Mesh

present timings for inner products carried out over a cube of virtual processors with
varying edge size.

3.2 Performance from Iterative Loops with Triangular Solves

We next present timing results from a program that performs a sequence of linked
matrix vector multiplies and triangular solves. Let M represent a matrix obtained from
the uniform discretization of a cube with a seven point template and let L represent a
lower triangular matrix with the same sparsity structure as M. We carried out the test
calculation depicted in Figure 1.

This program carried out the matrix vector multiply Mx = y by sweeping over a
three dimensional mesh. We embedded the three dimensional mesh into a two dimen-
sional grey coded processor lattice. The sparse lower triangular system of equations
Lz = y was then solved by sweeping over another three dirrensional mesh, embedded
in a conforming fashion into the same two dimensional processor lattice. The sweep
used to solve the sparse triangular system was carried out in a manner that respected
the dependencies of the problem. As part of the test loop, we also measured the time
required to perform inner products in a manner that conformed with data structures
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Table 2: Matrix Vector Multiply, Triangular Solve, Inner Product: Optimized: 4K
processors

Grid Inner Matrix Triangular Total
Edge Product Vector Solve Time

Size (ms) (ms) (ms) (ms)
16 1.5 29.0 51.9 81.3
32 2.8 56.7 106.8 162.4
48 3.8 78.4 169.1 240.6
64 5.0 115.9 225.7 321.5

128 22.2 478.3 960.1 1511.5

and the mapping used for the other tvo procedures.

We now describe in more detail how the triangular solve was carried out. In a cube
with n points along any edge, i, j, k between 1 and n are used to define the position of
a point in the cube where i,j, k represent the cartesian coordinates of a point in the
3-D mesh. We can parallelize this three dimensional triangular solve by concurrently
solving, for each consecutive v, the plane of points satisfying the condition i + j + k = v
for 1 < v < 3n -2. Each processor in the lattice contained, for a given i and j, variables
corresponding to values of k between 1 and n.

For 4K processors Table 2 depicts the timings obtained for various size domains,
timings from 100 iterations were averaged. The timings obtained from the cube with
edge sizes 128 and 64 corresponded to 188.9 and 104.9 MFlops respectively for the inner
product, 52.6 and 27.1 MFlops respectively for the matrix vector product and 13.1 and
7.0 MFlops respectively for the triangular solve. From the above results we conclude
that for an appropriately scaled problem on 64K processors, the fastest results we could
obtain for the inner product, matrix vector multiply and triangular solve would be 3022
MFlops, 842 MFlops and 210 MFlops respectively.

We were able to prevent the need to move data when we followed the the matrix
vector multiply by a sparse triangular solve because of the way in which we assigned
data to processors. This method of data assignment did have the side effect of requiring
us to perform the sparse matrix vector multiply in n consecutive phases. As one might
expect, the use of this embedding does can be seen to exact a performance penalty
when compared to the embedding discussed in Section 3.1. For example we attained a
computational speed of 64.2 MFlops for the problem with edge size 64 in Section 3.1,
we attain a computational speed of only 27.1 MFlops with the embedding discussed in
this section. The conforming inner product also had to be performed in n consecutive
phascs.
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3.3 Comparison with Cray Timings

To put the CM-2 timings presented above into perspective we will present timings
from a single head of a Cray X/MP for triangular solves and matrix vector multiplies
arising from problems with the same structure as the problem we presented above. We
used PCGPAK, a commercially available Krylov space solver. In this program, the
computation of the matrix vector multiply and triangular solve in the iterative loop
were vectorized using Cray Assembly Language (CAL). Computational speeds of 24
MFlops and 22 MFlops were obtained when performing matrix vector multiplies that
arose from meshes with edge sizes 20 and 30 respectively. Note that the speed of the
Cray (lid not increase with increasing problem size, on a vector machine such as the Cray
X/MP, the computational rate depends chiefly on the problems structure rather than its
size. By using a more specialized data structure that was well suited for vectorization,
[21 reports speeds of 150 MFlops on a single head of an Cray X/MP. The speed of the
matrix vector multiply in largest problem described in Section 3.2 was 52.6 MFlops
for the 4K processor machine, this should increase to 842 MFlops in a 64K processor
machine on an appropriately scaled problem.

The triangular solve comparisons were also very favorable. For meshes with edge
sizes of 20 and 30 a single head of an X/MP achieved computational rates of 13 and
12 MFlops respectively using PCGPAK. Ashcraft reports speeds of 25-40 MFlops on
triangular solves in problems with the same structure, again his higher computational
rate, -ere a'hiov,- , froiigbi the ,:cf of spe'iilize! data strurtlires. The computational
speed achieved by the largest problem described in Section 3.2 was 13.1 MFlops, this
should increase to 210 Mlops in a full G4K machine for an appropriately scaled problem.

3.4 Summary

The benchmarks described in this section imply that one can achieve extremely re-
spectable performance when one is able to make use of a highly tuned, special pur-
pose PARIS program for carrying out the iterative portion of a large three dimensional
computation. Our experiences with the higher level languages *lisp and C* were less
satisfactory. For instance, our *lisp versions of the sparse triangular solve described
above required much more time to run than did the PARIS version.

4 The Importance of Careful Embedding

In section 3 we described how it was possible to achieve very respectable rates of
computation even on iterative loops that included a sparse triangular solve. In this
section, we present some benchmarks that yield insight on what is required for achieving
this high performance.



Table 3: Matrix Vector Multiply: Explicitly mapped News Net v.s. General Router:
4K processors

Grid News News General General
Size Total Comp Total Comp.

(ms) (ms) (ms) (ms)
64 x 64 2.25 0.93 45.56 0.99

12S x 128 4.62 1.88 189.44 1.89
256 x 256 13.11 5.46 1001.11 5.51

4.1 The Consequences of a Poor Mapping

We have found that 20 to 75 fold performance differences are observed when we coi-
pared the performance of twc versions of a sparse matrix vector multiply program (Table
3). The problem consisted of sweeps over sparse matrices generated by square domains
of varying sizes with five point templates. The first version is explicitly mapped onto
the machine in a way that allows us to utilize the CM-2's fast NEWS network for local
communication. The other version uses a general router designed to carry out arbitrary
patterns of interprocessor communication. Both versions were programmed in *Lisp
and used the same data structures to represent the sparse matrices. For the 256 by 256
problem the timings for the explicitly mapped NEWS network code corresponded to a
speed of 40.0 MFlops, the timings for the router version of the code achieved a speed
of 0.5 MFlops. Note that the cost of computation does not vary significantly with the
mapping and choice of communications method; this consistency provides a reassurance
that the timing differences noted are actually due to communication related costs. The
timings depicted here are averages obtained from 1000 iterations of the matrix vector
multiply code. From this benchmark, it ic quite clear that satisfactory performance
cannot be obtained even from the most rudimentary sparse matrix code if one were to
map sparse matrices onto the CM-2 without regard to data dependency patterns.

4.2 The Consequences of a Using the General Router in a Well
Mapped Problem

We next attempt to obtain some rough estimates of the performance we could expect
if we were to write an iterative loop of a Krylov linear solver in a program capable of
mapping reasonably general sparse matrices onto the CM-2. We must assume that the
sparse matrix could arise from a mesh with irregularities. We consequently must use
the general router rather than the NEWS network.

We will present benchmarks that attempt to quantify the effects of using the general
router on a well mapped problem. This should give us a best case estimate of the per-
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Table 4: Three Dimensional Mesh Sweep and Solve: News Net v.s. Send and Fetch
General Router: 4K processors

Function 1 NEWS Router Router

Send Fetch
(ms) (ms) (ms)

'Matrix Vector 116 249 876
Solve 226 374 1376
Total 342 606 2247

formance we might expect from using the general router. We examined the performance
of versions of the PARIS program described in Section 3.2 in which we performed data
fetches or data sends using the general router instead of performing data sends using
the NEWS network. Note that in all of these cases, the problem was mapped so that
only nearest neighbor communications were needed. The timings we obtained with data
fetches carried out using the general router can be interpreted as best case estimates
of what one could expect from a C%1-2 executor that did not have access to a-priori
information on dependency patterns. Table 4 depicts the average time per iteration
required to solve a problem cv,r a 64 by 64 by 64 grid, the time was averaged over 100
iterations. Note that in this case there is a roughly eight fold performance difference
between the optimized NEWS network program and the version employing the general
router fetch instruction. As we mentioned in Section 3, on the 4K processor machine.
the program employing the NEWS network achieves a speed of 27.14 MNFlops on the
matrix vector multiply and a speed of 6.97 MFlops on the triangular solve. The fetch
version of the general router program achieves a speed of 3.58 .%IFlops on the matrix
vector multiply and 1.14 MFlops on the triangular solve.

In Table 5 we give comparative timings obtained through the use of the NEWS
nt'twork and the fetch instruction from the general router for three dimensional meshes
with varying edge size. We also present the ratio of the fetch timings to the NEWS
net timings. For both the matrix vector multiply and the triangular solve, the ratio
between the NEWS net and router timings remain roughly constant for all meshes with
edge size up to 64. The router timings become relativeiy less efficient for the mesh
with edge size 128. When we solve this pro)lem with a 128 edge sized mesh, 4 virtual
processors are assigned to each actual processor. As described above, the assignment
of multiple virtual processors to each actual processor can have the effect of reducing
communications overhead: less information needs to be exchanged between processors.
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Table 5: Three Dimensional Mesh Sweep and Solve : News Net v.s. General Router
Fetch - Varying Mesh Size: 41K processors

Edge NIM I MVM MVM Solve Solve Solve
Size NEWS Router Ratio NEWS Router Ratio

(ms) (ms) (ms) (ms)

16 29 208 7.2 52 328 6.3

32 57 441 77 107 664 6,2

64 116 876 7.6 226 1376 6.1
128 478 4.5S1 9.6 961 7098 7.3

5 Conclusion

In Section 3, we presented what we might regard as best case timings for the sparse
matrix vector multiplies, sparse triangular solves, and inner products that constitute the
iterative portion of Krylov space linear solvers when the solvers use incompletely fac-
tored matrices for preconditioning. We performed timings on a large three dimensional
model problem over a cube shaped domain discretized with a seven point template. The
highest computational rate we were able to achieve for the sparse triangular solve was
13.1 MFlops on 4K processors; this would correspond to a timing of 210 MFlops on an
appropriately scaled problem on a 64K processor machine. The highest computational
speed we achieved for a matrix vector multiply was 64.2 MFlops; this would corre-
spond to a speed of 1027.0 MFlops in a 64K processor machine. Thus for appropriately
structured problems, the CM-2 achieves impressive computational speeds. For both the
matrix vector multiply and triangular solve computational kernels, the projected speeds
on a full 64K processor machine exceed by a substantial factor the speeds that can be
achieve,' by carefully vectorized code on a single head of a Cray X/MP. These timings
appear to leave open the possibility that in large three dimensional problems, the use of
incompletely factored matrices as preconditioners in Krylov space methods might speed
the solution of some linear systems.

The timings on the CM-2 were highly dependent on the use of very specialized pro-
grams. These programs mapped the problem domain onto the processor topology very
carefully and used the optimized local NEWS communications network. We explored the
consequences of relaxing these restrictions in a variety of ways. Performance degraded
very significantly as one abandoned the optimized NEWS communications network and
abandoned the careful mapping of a problem domain to the CM-2 processor topology.
In some cases we noted 20 to 75 fold degradations in performance as these constraints
were relaxed.

The results of our benchmarks clearly demonstrate that one can obtain extremely
high performance on Krylov space linear solvers on the CM-2. The benchmarks also
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reveal that this performance is unlikely to be achieved in a program capable of han-
dling general sparse matrices. It appears that it would be quite feasible to construct a
preconditioned Krylov solver capable of solving systems arising from partial differential
equations discretized using one of a fixed set of finite difference templates.
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